Impact of Lateglacial cold events on the northern Aegean region reconstructed from marine and terrestrial proxy data

ULRICH KOTTHOFF,1,2* ANDREAS KOUTSODENDRIS,1 JÖRG PROSS,1 GERHARD SCHMIEGL,2 ANDRÉ BORENMANN,3 CHRISTIAN KAUL,3 GIANLUCA MARINO,4 ODILE PEYRON5 and RALF SCHIEBEL6,7

1Palaeoenvironmental Dynamics Group, Institute of Geosciences, University of Frankfurt, Frankfurt, Germany
2Geological–Palaeontological Institute, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
3Institute of Geophysics and Geology, University of Leipzig, Leipzig, Germany
4Universitat Autònoma de Barcelona (UAB), Institut de Ciència i Tecnologia Ambientals (ICTA), Bellaterra, Cerdanyola del Vallès, Spain
5Laboratoire de Chrono-Environnement, UMR-UFC/CNRS 6249 USC INRA, University of Franche-Comté, Besançon, France
6National Oceanography Centre, University of Southampton, Southampton, UK
7University of Angers, Laboratoire des Bio-Indicateurs Actuels et fossiles, Angers, France

Received 27 January 2010; Revised 7 June 2010; Accepted 7 June 2010

ABSTRACT: Marine palynomorph data paired with other indicators of sea-surface hydrography (planktic foraminiferal assemblages and oxygen isotopes) were used to decipher the impact of cold events on the northern Aegean region during the last glacial to interglacial transition. The data, which were derived from marine sediment cores GeoTu SL152 and GeoTu SL148, point to a strong impact of the Heinrich 1 and Younger Dryas cold events on surface-water conditions in the northern Aegean Sea. Shifts in marine palynomorph assemblages correlate with changes in terrestrial vegetation and climate (i.e. precipitation and temperature reconstructions based on pollen assemblages) in the northern borderlands of the Aegean Sea. The climate responses of the Aegean region to Heinrich event 1 (H1, ca. 17.5 to ca. 15.7 cal ka BP) and Younger Dryas (ca. 12.6 to ca. 11.7 cal ka BP) events appear similar in magnitude (with mean annual temperatures between ~6 and 10°C and mean annual precipitation between ~300 and ~450 mm). However, the annual temperature decline during the H1 relative to the preceding already cold conditions was minor (<3°C). The transition from the relatively warm and humid local equivalent of the Allerød interstadial to the Younger Dryas, on the other hand, witnessed an annual temperature decline of 6°C and an annual precipitation decrease of 300 mm, the latter occurring abruptly within only ca. 150 a. The return to warmer conditions in the northern Aegean region after the Younger Dryas was completed at ca. 11.6 cal ka BP. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS: land–sea correlation; temperature changes; Heinrich event 1; Younger Dryas; Lateglacial; eastern Mediterranean.

Introduction

Marking the transition from glacial to present-day interglacial conditions, the late Pleniglacial/Lateglacial interval (coeval with late Marine Isotope Stage 2) was punctuated by a series of millennial-scale climate oscillations that affected the ocean–atmosphere system on an interhemispheric scale (e.g. Waebroeck et al., 2001; Barker et al., 2009). In the Northern Hemisphere, the Last Glacial Maximum was followed by a severe cold interval (i.e. Heinrich event 1 (H1), ca. 17 to ca. 15 ka ago, e.g. Bond et al., 1993), an abrupt shift to warmer conditions connected to the Bolling (ca. 14.5 to ca. 13.8 ka ago, synchronous with the ‘Meiendorf interstadial’ in central Western Europe; e.g. Litt et al., 2001) and Allerød interstadials (ca. 13.7 to ca. 11.7 ka ago), and a return to cold conditions during the Younger Dryas (YD, also regarded as event GS 1 in Greenland ice cores; ca. 12.7 to ca. 11.7 ka ago; e.g. Björck et al., 1998; Lowe et al., 2008). The latter oscillation precedes the final transition to the interglacial conditions of the early Holocene.

H1 and the YD had a significantly stronger impact and lasted much longer than the climate deteriorations punctuating the Holocene (Broecker, 2000). This has been shown by a number of climate records from different archives, such as ice core data from Greenland (e.g. Björck et al., 1998), lake sediment records from western Europe (Litt et al., 2001; Brauer et al., 2008), marine sediment cores from the Atlantic Ocean (e.g. Waebroeck et al., 2001), the western Mediterranean (e.g. Cacho et al., 1999) and western Africa (Weldeab et al., 2007; Mulitza et al., 2008), and speleothem data from Asia Minor (Fleitmann et al., 2009).

H1 and the YD are probably related to a decrease in oceanic heat transport to the northern high latitudes as a result of enhanced freshwater influx to the North Atlantic (e.g. Bond et al., 1993; McManus et al., 2004; Broecker, 2006). Both the H1 and YD events show durations of the same order of magnitude (ca. 1.2 to ca. 2.0 ka), which distinguishes them from other, shorter-termed cold events during the late Pleniglacial and Lateglacial (e.g. the Oldest and Older Dryas). However, while the H1 event occurred under glacial boundary conditions, the YD interrupted an interval of near-interglacial climate, pre-dating the last summer insolation maximum of the Northern Hemisphere by merely ca. 1.5 ka (at ca. 11 ka ago; e.g. Berger and Loutre, 1991).

The eastern Mediterranean region represents an ideal area to study and compare the impacts of these climate events. It has been repeatedly demonstrated that the Aegean region reacts sensitively to short-term and muted episodes of climate change under the interglacial boundary conditions of the Holocene (e.g. Rohling et al., 2002; Kothoff et al., 2008a,b; Pross et al., 2009; Marino et al., 2009). Furthermore, the Aegean Sea is an important region for deep-water formation, and climate changes in the Aegean region affect the thermohaline circulation in the entire eastern Mediterranean Sea (e.g. Theocharis et al., 1999; Marino et al., 2007).

To date, several records from the Aegean Sea and its borders (e.g. Aksu et al., 1995; Lawson et al., 2005) have allowed analysis of the regional expression of the YD to some degree. However, many of these records lack robust
chronologies (see Rossignol-Strick, 1995; Kotthoff et al., 2008b), which hampers the unequivocal identification of the YD. Sedimentological, micropalaeontological and palynological records from the northern Aegean Sea indicate that the YD had a strong impact on the marine and terrestrial environments in this area (Aksu et al., 1995; Ehrmann et al., 2007; Kuhnt et al., 2007; Kotthoff et al., 2008a). In the marine realm, the intermediate and deep-water formation was strengthened due to the return to colder conditions (e.g. Kuhnt et al., 2007), while in the terrestrial realm the YD caused a rapid decline in forest cover and an increase in steppe elements between ca. 12.7 and ca. 11.7 cal ka BP (Kotthoff et al., 2008a).

In contrast, the impact of the H1 event on terrestrial and marine environments of the Aegean region has yet remained poorly constrained; in particular, there is a lack of climate data for the terrestrial realm during the H1 interval. Investigations based on marine sediments have suggested that the H1 did not significantly affect the northern Aegean region (Hamann et al., 2008). This finding appears difficult to reconcile with the evidence that even the relatively low-amplitude climate fluctuations of the Holocene left a clear imprint on terrestrial and marine environments of the Aegean region (e.g. Rohling et al., 2002; Kotthoff et al., 2008a,b; Pross et al., 2009; Marino et al., 2009).

In light of the above, we here present new organic-walled dinoflagellate cyst and oxygen isotope data in combination with previously published pollen data (Kotthoff et al., 2008a) from marine core SL152 (northern Aegean Sea), integrated with new planktic foraminiferal census count and previously published oxygen isotope data from neighbouring core SL148. The pollen data from core SL152 have been complemented by not yet published quantitative reconstructions for annual precipitation and temperature. Our multi-proxy approach yields a comprehensive view of the impact of late Pleniglacial and Lateglacial climatic events, notably the H1 and the YD, on terrestrial and marine ecosystems in this climatically highly sensitive region.

Regional setting

The Aegean Sea is semi-isolated from the rest of the Mediterranean Sea and characterised by a complex bathymetry, with large shelf areas in the north and northeast (Fig. 1; Perissoratis and Conispoliatis, 2003). In the south, it is connected to the Levantine and Ionian seas through several seaways. In the northeast there is a connection to the Black Sea via the Dardanelles, the Sea of Marmara and the Bosporus (Fig. 1).

The present-day wind field in the Aegean region is characterised by northerly directions, with cold and dry Arctic/polar outbreaks during winter and spring months (Poulos et al., 1997; Fig. 1). In comparison to the sediment supply by rivers, aeolian sediment influx is quantitatively negligible (Chester et al., 1977; Ehrmann et al., 2007). Significant suspension loads are carried into the Aegean Sea by several rivers, notably from its northern borderlands (Ehrmann et al., 2007; Kotthoff et al., 2008b; Fig. 1); to a lesser extent, riverine input of terrigenous material is derived from western Asia Minor, e.g. via the Kara Menderes and Gediz rivers. Outflow of Black Sea surface water represents an additional source for suspended terrigenous material (e.g. Lane-Serff et al., 1997; Çatçay et al., 2000). According to Sperling et al. (2003), the connection of the Aegean Sea and the Sea of Marmara was probably already established at ca. 14 cal ka BP, and Verleye et al. (2009) date the establishment of a connection between the Black Sea and Sea of Marmara at ca. 8.2 cal ka BP. In any case, it was probably not until ca. 6.5 cal ka BP that the marine connection between the Aegean and Black Seas was fully established (Sperling et al., 2003; Ehrmann et al., 2007). The present-day outflow of Black Sea surface water into the Aegean Sea amounts to ca. 400 km3 a$^{-1}$, with highest values during the late spring and summer months (Aksu et al., 1995). Surface-water temperature and salinity values in the Aegean Sea show a pronounced NE–SW gradient, with lower values in the North (Aksu et al., 1995).

Material and methods

Cores GeoTu SL152 (40° 05′19″ N, 24° 36′65″ E, water depth 978 m) and GeoTu SL148 (39° 45′23″ N, 24° 05′78″, water depth 1094 m) have been retrieved in 2001 during RV Meteor cruise M51/3 from the Mount Athos Basin, northern Aegean Sea, −200 km SE of Thessaloniki (Fig. 1). The two sites are very close to one another, with the distance amounting to ~50 km.

![Figure 1](https://example.com/figure1.jpg)

Figure 1. Map of the Aegean region. Black stars mark the locations of cores GeoTu SL152 and SL148. Hatched area indicates shelf exposed between ca. 19 and ca. 15 cal ka BP (after Cramp et al., 1988; Aksu et al., 1995; Perissoratis and Conispoliatis, 2003). Isolines show water depths of 600 and 1000 m. White arrows indicate low-salinity Black Sea surface water flow; black arrows indicate warm and high-salinity surface water circulation, following Aksu et al. (1995), Lykousis et al. (2002) and Ehrmann et al. (2007). Wind directions (following May, 1982, and Poulos et al., 1997) over the Aegean region during summer and winter are indicated at the top left.
Here we present centennial-scale resolution (ca. 150 a) dinocyst and planktic foraminiferal oxygen isotope data, and quantitative pollen-based terrestrial climate data from core GeoTu SL152 (SL152) comprising the time interval from ca. 19 to ca. 9 cal ka BP. These data are integrated with planktic foraminiferal census counts and oxygen isotope data from core GeoTu SL148 (temporal resolution: ca. 300 a). The selected time interval comprises the late Pleniglacial to the earliest Holocene. In-depth information on the terrestrial palynomorph assemblages and sedimentology of core SL152 has been previously provided by Kotthoff et al. (2008a,b). Detailed information on the sedimentary characteristics and benthic foraminiferal assemblages from core SL148 is given by Ehrmann et al. (2007) and Kuhnt et al. (2007).

Age model

The chronology of core SL152 is based on eight 14C accelerator mass spectrometry dates obtained from *Globigerinoides ruber* (white) and, in case not enough *G. ruber* material was available, from *Globigerina bulloides*, other surface-dwelling foraminifera and pteropods. Detailed information on the age model of core SL152 is given in Kotthoff et al. (2008a,b). Three 14C dates for core SL148 were obtained from *G. ruber*, *G. bulloides*, *Globigerinoides sacculifer*, *Neogloboquadrina incompta* and *Turborotalita quinqueloba*. Details on the age model of core SL148 are provided by Ehrmann et al. (2007). For both cores, local reservoir age corrections were applied following Siani et al. (2001; generally 400 a), and conversions to calendar ages were carried out via the radiocarbon calibration software of Fairbanks et al. (2005). Both age models have been shown to be internally consistent (Kotthoff et al., 2008a,b; Fig. 2).

Analyses from core SL152

Palynomorphs

For the analysis of terrestrial and marine palynomorph assemblages, samples were taken from the interval between 6.30 and 3.27 m at a resolution of 1 cm within the sapropelic interval of core SL152. Below the interval of sapropel S1 (S1 equivalent to ca. 9.6 to ca. 7 cal ka BP; see Kotthoff et al., 2008b), the sample spacing was either 5 or 10 cm. For the time interval discussed here (i.e. 19–9 cal ka BP), an average temporal resolution of 150 a was achieved. Per sample, 1–6 g of sediment was processed using standard palynological techniques (e.g. Pross, 2001).

Whenever possible, at least 300 terrestrial palynomorphs (excluding bisaccate pollen and spores) were determined and counted per sample. Since bisaccate pollen is generally overrepresented in marine pollen assemblages due to its particularly good transport properties and high resistance to oxidation (e.g. Rossignol-Strick and Paterne, 1999), it was excluded from the pollen sums. In general, ~200 (at least 150) organic-walled dinoflagellate cysts (dinocysts) were determined per sample.

Pollen-based quantitative climate reconstructions

To support the qualitative pollen-derived climate information, the mean annual temperature (MT$_{\text{mean}}$) and mean annual precipitation (MP$_{\text{mean}}$) were calculated from pollen data using the modern analogue technique (MAT; e.g. Guiot, 1990). Originally developed for continental pollen records, the MAT has been successfully applied to marine pollen assemblages (e.g. Sánchez Goñi et al., 2005; Dormoy et al., 2009; Comboudieu-Nebout et al., 2009). The MAT reconstructions are based on a database with 2748 modern pollen spectra from Europe (Bordon et al., 2009), updated to 3530 by the addition of modern spectra from the Mediterranean area (Dormoy et al., 2009). Here we used the 10 modern assemblages with smallest chord distances for the reconstructions of the climate parameters. Because of its overrepresentation in marine pollen assemblages, bisaccate pollen was removed from the evaluated samples and the database (see also above).

Stable isotopes

Forty-four samples from core SL 152 were analysed for planktic foraminiferal oxygen isotope ratios. In 25 samples, the summer-mixed–layer-dwelling *Globigerinoides ruber* (white) was measured. Owing to the low abundance of *G. ruber* in the late Pleniglacial and Lateglacial sediments of core SL152, the sub-thermocline-dwelling *Neogloboquadrina incompta* was additionally used for the time interval from 17 to 12 cal ka BP (Fig. 5C).

Samples for planktic foraminifera were wet-sieved over a 63 μm mesh with tap water. *N. incompta* and *G. ruber* were hand-picked from the >150 μm fraction. Specimens were cleaned with deionised water and ultrasound for 3 s. Isotope analyses were carried out on batches of 5–10 specimens on a PDZ Europa Geo 20-20 mass spectrometer with individual acid bath carbonate preparation (orthophosphoric acid reaction at 70 °C), at the National Oceanography Centre, Southampton. Isotope ratios are expressed relative to Vienna PeeDee Belemnite (VPDB). External precision is better than 0.06‰ for both 13C and 18O. Further samples (*N. incompta*) from the late Pleniglacial and Lateglacial (Fig. 5C) were measured at the Institute of Geosciences, Frankfurt University, using a Flash-EA 1112 connected to the gas source mass spectrometer MAT 253.

Figure 2. Comparison of the age models of core GeoTu SL152 (Kotthoff et al., 2008a) and core GeoTu SL148 (Kuhnt et al., 2007). In both cases, the ages are reservoir-corrected (following Siani et al., 2001) and converted to calendar ages (via the radiocarbon calibration software of Fairbanks et al., 2005). This figure is available in colour online at wileyonlinelibrary.com.
(both Thermo-Finnigan). For these results, the external precision is better than 0.06 % for δ¹³C and 0.08 % for δ¹⁸O.

Analyses from core SL 148

Planktic foraminiferal assemblages

From core SL148, 35 samples covering the interval between 2.85 and 1.275 m depth have been studied for their content in planktic foraminifera. Samples were usually taken at 5 cm distance, which yields a temporal resolution between ca. 200 and ca. 400 a. The four uppermost samples (1.38–1.275 m depth) were taken at 2–2.5 cm distance. Sediment samples were dried, weighed and washed through a 63 μm screen. The determination of planktic foraminifers was carried out on the size fraction >125 μm. At least 300 specimens were counted per sample.

We distinguished between tropical/subtropical (i.e. warm-water), temperate/transitional and polar/subpolar (i.e. cold-water) assemblages following Be´ and Tolderlund (1971), Hilbrecht (1996) and Kucera (2007). The warm-water assemblage is dominated by *Globigerinoides ruber* (white), *G. sacculifer*, *Globoturborotalita* spp., *Orbulina universa* and *G. ruber* (pink; in descending order of abundance, Figs 4 and 5B). The temperate/transitional assemblage is dominated by *G. bulloides*. The polar/subpolar assemblage comprises mainly *N. incompta* (cf. Darling et al., 2006), *Turborotalita quinqueloba* and *N. pachyderma*. Of these forms, *N. pachyderma* prefers the coolest conditions (Hemleben et al., 1989; Hilbrecht, 1996, 1997; Kucera, 2007). *T. quinqueloba* is more frequent at lower sea-surface temperatures than *N. incompta* (Hilbrecht, 1996; Kucera, 2007).

Results and discussion

Palynomorph preservation

As shown by previous studies, selective degradation affected the palynomorph assemblages from the Aegean Sea, and notably from the Mount Athos Basin, to a much lesser extent than commonly encountered in sediments from the Mediterranean Sea (compare Zonneveld et al., 2001). This is due to the relatively high (>30 cm ka⁻¹) sedimentation rates in the Mount Athos basin (Kotthoff et al., 2008a,b).

This view is corroborated by the distribution of dinocysts within core SL152, notably the continuous occurrence of the rather oxidation-resistant taxon *Impagidinium aculeatum* (Sangiorgi et al., 2003) prior to and during S1 deposition. If selective degradation had seriously affected the dinocyst assemblages, *I. aculeatum* should exhibit increased percentages before S1 and during S1 interruptions, as has been found, for example, in the Adriatic Sea (Sangiorgi et al., 2003). Instead, changes in *I. aculeatum* percentages do not vary in direct response to the deposition of sapropelic sediments. The determination coefficient between sediment lightness, which can be used as a total organic carbon (C₉₉) proxy and a means to differentiate between sapropelic and non-sapropelic sediments (see discussion in Kotthoff et al., 2008b), and the percentages of *Impagidinium* is indeed very low ($R^2 = 0.0238$, $N = 66$).
Heterotrophic dinocyst taxa (e.g., *Brigantedinium* spp.), often considered particularly sensitive to oxidation (e.g., Zonneveld et al., 2001), show a pronounced abundance increase between ca. 9.8 and ca. 9.5 cal ka BP, which roughly coincides with the onset of S1 (Fig. 3). Hence it could be argued that this abundance pattern reflects the reduced oxidation potential connected to sapropel formation. However, heterotrophic taxa also show almost sapropel-like percentages during the warm phases of the Bølling and Allerød (Fig. 3), which to our knowledge have not been featured by reduced bottom-water ventilation in the eastern Mediterranean. Thus the high percentages of heterotrophic taxa during the formation of S1 primarily reflect changes in surface-water conditions such as enhanced nutrient supply rather than enhanced preservation (see Combourieu-Nebout et al., 1998; Sluijs et al., 2005).

Terrestrial palynomorphs and quantitative climate reconstructions

For the interval from ca. 19 to ca. 17.5 cal ka BP, the pollen data from core SL152 suggest cooler and drier conditions in the borderlands of the northern Aegean Sea as compared to present-day conditions. This is qualitatively indicated by relatively high percentages (20–25%) of steppe element pollen (SEP). Quantitative pollen-based climate reconstructions suggest low annual terrestrial temperatures and precipitation ($MT_{\text{year}} \approx 11^\circ C$, $MP_{\text{year}} \approx 100 \text{ mm a}^{-1}$; Fig. 5E and G). The MT_{year} remains relatively low until ca. 15 cal ka BP. From ca. 15 to ca. 12.7 cal ka BP, MP_{year} percentages increase to 40%. The time interval from ca. 15 to ca. 12.7 cal ka BP is correlated with the tripartite Bolling/Allerød interval described from Greenland ice cores (cf. Björck et al., 1998; Kothoff et al., 2008a), respectively. Minor relative increases in NSAP (at ca. 14.5, ca. 13.7, ca. 13.5 and ca. 12.8 cal ka BP), indicating more humid conditions, correlate well with the Greenland interstadials GI-1e, -1c3, -1c1 and -1a. Our pollen-based quantitative data reveal significantly higher MT_{year} and MP_{year} during that time than during the preceding late Pleniglacial. There are, however, MT_{year} and MP_{year} setbacks.

The following YD is characterised by very high percentages of SEP (up to 40%). The reconstructed values for the MT_{year} and MP_{year} are even lower than during the late Pleniglacial ($MT_{\text{year}} \approx 6^\circ C$ and $MP_{\text{year}} \approx 300 \text{ mm}$; Fig. 5). After 17.5 cal ka BP, the decrease in non-saccate arboreal pollen (NSAP) percentages is paralleled by an MT_{year} drop of at least 1.5°C (Fig. 5F). This is followed by an increase in SEP percentages at ca. 16.5 cal ka BP and a decrease in MP_{year} (~100 mm a$^{-1}$; Fig. 5E and G). The MT_{year} remains relatively low until ca. 15 cal ka BP. From ca. 15 to ca. 12.7 cal ka BP, MP_{year} percentages increase to 40%. The time interval from ca. 15 to ca. 12.7 cal ka BP is correlated with the tripartite Bolling/Allerød interval described from Greenland ice cores (cf. Björck et al., 1998; Kothoff et al., 2008a), respectively. Minor relative increases in NSAP (at ca. 14.5, ca. 13.7, ca. 13.5 and ca. 12.8 cal ka BP), indicating more humid conditions, correlate well with the Greenland interstadials GI-1e, -1c3, -1c1 and -1a. Our pollen-based quantitative data reveal significantly higher MT_{year} and MP_{year} during that time than during the preceding late Pleniglacial. There are, however, MT_{year} and MP_{year} setbacks.

The following YD is characterised by very high percentages of SEP (up to ~40%). The reconstructed values for the MT_{year} and MP_{year} are even lower than during the late Pleniglacial (~6°C and ~300 mm; Fig. 5). After the YD, the MT_{year} increases rapidly, reaching values typical of the Holocene (~13°C) already at ca. 11.6 cal ka BP. In the pollen assemblages from core SL152, this warming is paralleled by a rapid decline in SEP percentages. The MP_{year} increases to ~600 mm after the YD and fluctuates around this level until ca. 10.5 cal ka BP. From ca. 10.5 until ca. 9.6 cal ka BP, it increases by another 200 mm. The general trend towards more humid conditions between ca. 11.7 and ca. 9.5 cal ka BP was interrupted by minor setbacks reflected by relatively low NSAP percentages and MP_{year} and MT_{year} decreases at ca. 11 and ca. 10.4 cal ka BP (Fig. 5).
Marine proxies

Dinocysts

During the late Pleniglacial, particularly between ca. 18 and ca. 16 cal ka BP, *Nematosphaeropsis labyrinthus* dominates the dinocyst assemblages with relative abundances approaching 50% (Fig. 3). Besides being a euryhaline species (Marret and Zonneveld, 2003; Pross et al., 2004), this taxon generally indicates cool surface waters (e.g. Sangiorgi et al., 2002). Similarly, *Spiniferites elongatus* also represents a cool-water indicator (Harland, 1983; Combourieu-Nebout et al., 1998; Marret and Zonneveld, 2003; Marino et al., 2009). Relatively high (>4%) percentages of *S. elongatus* occur between 17.5 and 16 cal ka BP (Fig. 3), and the combined percentages of the cold-water indicators *N. labyrinthus* and *S. elongatus* are highest at ca. 16.5 cal ka BP. A short-lived peak of *Lingulodinium machaerophorum* and *Operculodinium centrocarpum* precedes the broader maximum of cold-water indicators at ca. 19 cal ka BP.

Tectatodinium psilatum and *Spiniferites cruciformis* (results for the latter are not shown here) occur rarely, but consistently since 19 cal ka BP. This indicates that these species can probably not be used as an indicator for a connection between the Aegean and the Black Sea as previously suggested by Aksu et al. (1995). This is because, in light of glacial sea-level dynamics, a linkage of the Aegean Sea and the Black Sea cannot have been established prior to a strong sea-level rise above ‘glacial’ values, probably not earlier than ca. 10–9 cal ka BP (Aksu et al., 1995; Major et al., 2006; Bahr et al., 2008) or even later (e.g. Sperling et al., 2003).

After ca. 16 cal ka BP, the percentages of cold-water indicators, in particular *N. labyrinthus*, decline, while percentages of the salinity-tolerant taxon *O. centrocarpum* (Combrouie-Nebout et al., 1998; Marret and Zonneveld, 2003) reach peak values at ca. 15.4 cal ka BP. During the Bølling and Allerød, between ca. 14.6 and 12.7 cal ka BP, *Spiniferites* species dominate the dinocyst assemblages. This interval is furthermore characterised by repeated increases in *S. elongatus* percentages. Heterotrophic taxa (consisting mainly of *Brigantedinium* spp.) show several pronounced peaks at the onset of the Bølling interstadial (ca. 14.5 cal ka BP) and during the Allerød interstadial (between ca. 14 and ca. 13 cal ka BP). The YD (ca. 12.6 to ca. 11.7 cal ka BP) is characterised by an increase of cold-water indicators at the expense of total *Spiniferites*, *Bitectatodinium tepikiense* and heterotrophic species (Figs 2 and 3). Notably, *N. labyrinthus* percentages reach maximum values at ca. 12.3 cal ka BP, whereas *S. elongatus* is abundant during the onset (ca. 12.7 to ca. 12.4 cal ka BP) and the end of the YD (ca. 12.0 to ca. 11.8 cal ka BP).

Between 11.2 and 10.2 cal ka BP, following a short-term percentage increase of *Spiniferites* species, *L. machaerophorum* dominates the dinocyst assemblages. This taxon indicates estuarine to neritic conditions and occurs under conditions of enhanced sea-surface productivity (e.g. Wall et al., 1977;
The Aegean Sea (Casford et al., 2009) is in agreement with previous studies from the lowest values recorded during S1 deposition. This suggests decreasing sea-surface temperature (SST) during that time, culminating in particularly cold conditions at ca. 16.5 cal ka BP. High relative abundances of T. quinqueloba and a subordinate peak of N. pachyderma in core SL148 also indicate lower SSTs at ca. 16.5 cal ka BP (Fig. 5B), as do high δ18O values (Fig. 5).

This particularly cold phase around ca. 16.5 cal ka BP is coeval with an interval of harsh climate conditions, as observed in other sectors along the southern European margin (e.g. Combouvier-Nebout et al., 1998, 2009; Kageyama et al., 2005; Brauer et al., 2007; Fletcher and Sánchez Goñi, 2008) and Asia Minor (e.g. Fleitmann et al., 2009). It appears to be linked to the H1 event in the northern North Atlantic Ocean (e.g. Bond et al., 1993). Hence the reduction of oceanic heat transport to the high northern latitudes as connected to Heinrich events (e.g. Bond et al., 1993) also led to significantly dryer/colder conditions in the eastern Mediterranean region. A possible link within this teleconnection could be sought in a transient strengthening of the Siberian High during H1, resulting in harsher conditions during the winter and early spring months. A similar mechanism has already been shown for cold spells in the Aegean region during the Holocene (e.g. Rohling et al., 2002; Kothoff et al., 2008b), and for changes in Recent climate of the eastern Mediterranean region (Saaroni et al., 1996).

After the particularly cool conditions at ca. 16.5 cal ka BP, the decrease of N. labyrinthus percentages and the subsequent increases of O. centrocarpum, Lingulodinium machaerophorum and Spiniferites spp. percentages between ca. 16 and ca. 14.3 cal ka BP are probably caused by enhanced freshwater/nutrient influx and increasing surface-water temperatures due to a climatic amelioration. This view is supported by rapid relative abundance increases of benthic foraminiferal high-food/low-O2 indicators and N. incompta in core SL148 (Fig. 5). As previously suggested by Rohling et al. (1993) and Casford et al. (2002), an increased abundance of N. incompta may indicate prolonged, intensified surface-water stratification and a more pronounced deep chlorophyll maximum in summer.

During the same interval (between ca. 16 and ca. 14.5 cal ka BP), the borderslands of the Aegean Sea witnessed the coeval spreading of broad-leaved trees (indicated by increasing NSAP percentages) and a decrease of steppe vegetation (Fig. 5E). Quantitative pollen-based climate reconstructions show an $\mathrm{Mp}_{\text{yaeu}}$ increase in the borderslands of the Aegean Sea between ca. 16 and ca. 14.5 cal ka BP (Fig. 5G); M_{yaeu} became slightly milder between ca. 15.5 and 15.1 cal ka BP (Fig. 5F). Such a climatic amelioration is compatible with increased melting rates of glaciers in the Rhodope mountains during that time, as suggested by Ehrmann et al. (2007).

Our data suggest a further climate setback in the borderslands of the Aegean Sea at ca. 15.5 cal ka BP, which is probably equivalent to the Oldest Dryas (Figs 5F and G). A comparable setback is also reflected in the stalagmite δ18O records from the Sofular Cave (Turkey; Fleitmann et al., 2009) and from the Hula Cave (Asia; e.g. Wang et al., 2001), and furthermore in the NGRIP δ18O data (Svensson et al., 2008) and, to a lesser degree, in the GISP2 δ18O record (Stuiver and Grootes, 2000; Fig. 5H). Although H1 is dated between ca. 16.5 and ca. 16 cal ka BP (Bond et al., 1993), several authors imply that this setback may still be related to H1 (e.g. Svensson et al., 2008; Fleitmann et al., 2009).

Following this interpretation, the H1 in the Aegean region can be characterised as a 2.4 ka long interval (ca. 17.4 to ca.

Synthesis of marine and terrestrial signals

Late Pleniglacial (ca. 19 to ca. 14.7 cal ka BP)

As suggested by the pollen-based climate reconstructions from core SL152, the late Pleniglacial in the northern borderslands of the Aegean Sea is characterised by cold and dry climate conditions. This interval is punctuated by an interlude of particularly dry and cold conditions between ca. 17.3 and ca. 16.3 cal ka BP. The strong percentage increase of dinocyst cold indicators starting at ca. 19 cal ka BP (Fig. 5D), especially N. labyrinthus (Fig. 3), suggests decreasing sea-surface temperature (SST) during that time, culminating in particularly cold conditions at ca. 16.5 cal ka BP. High relative abundances of T. quinqueloba and a subordinate peak of N. pachyderma in core SL148 also indicate lower SSTs at ca. 16.5 cal ka BP (Fig. 5B), as do high δ18O values (Fig. 5).

This particularly cold phase around ca. 16.5 cal ka BP is coeval with an interval of harsh climate conditions, as observed in other sectors along the southern European margin (e.g. Combouvier-Nebout et al., 1998, 2009; Kageyama et al., 2005; Brauer et al., 2007; Fletcher and Sánchez Goñi, 2008) and Asia Minor (e.g. Fleitmann et al., 2009). It appears to be linked to the H1 event in the northern North Atlantic Ocean (e.g. Bond et al., 1993). Hence the reduction of oceanic heat transport to the high northern latitudes as connected to Heinrich events (e.g. Bond et al., 1993) also led to significantly dryer/colder conditions in the eastern Mediterranean region. A possible link within this teleconnection could be sought in a transient strengthening of the Siberian High during H1, resulting in harsher conditions during the winter and early spring months. A similar mechanism has already been shown for cold spells in the Aegean region during the Holocene (e.g. Rohling et al., 2002; Kothoff et al., 2008b), and for changes in Recent climate of the eastern Mediterranean region (Saaroni et al., 1996).

After the particularly cool conditions at ca. 16.5 cal ka BP, the decrease of N. labyrinthus percentages and the subsequent increases of O. centrocarpum, Lingulodinium machaerophorum and Spiniferites spp. percentages between ca. 16 and ca. 14.3 cal ka BP are probably caused by enhanced freshwater/nutrient influx and increasing surface-water temperatures due to a climatic amelioration. This view is supported by rapid relative abundance increases of benthic foraminiferal high-food/low-O2 indicators and N. incompta in core SL148 (Fig. 5). As previously suggested by Rohling et al. (1993) and Casford et al. (2002), an increased abundance of N. incompta may indicate prolonged, intensified surface-water stratification and a more pronounced deep chlorophyll maximum in summer.

During the same interval (between ca. 16 and ca. 14.5 cal ka BP), the borderslands of the Aegean Sea witnessed the coeval spreading of broad-leaved trees (indicated by increasing NSAP percentages) and a decrease of steppe vegetation (Fig. 5E). Quantitative pollen-based climate reconstructions show an $\mathrm{Mp}_{\text{yaeu}}$ increase in the borderslands of the Aegean Sea between ca. 16 and ca. 14.5 cal ka BP (Fig. 5G); M_{yaeu} became slightly milder between ca. 15.5 and 15.1 cal ka BP (Fig. 5F). Such a climatic amelioration is compatible with increased melting rates of glaciers in the Rhodope mountains during that time, as suggested by Ehrmann et al. (2007).

Our data suggest a further climate setback in the borderslands of the Aegean Sea at ca. 15.5 cal ka BP, which is probably equivalent to the Oldest Dryas (Figs 5F and G). A comparable setback is also reflected in the stalagmite δ18O records from the Sofular Cave (Turkey; Fleitmann et al., 2009) and from the Hula Cave (Asia; e.g. Wang et al., 2001), and furthermore in the NGRIP δ18O data (Svensson et al., 2008) and, to a lesser degree, in the GISP2 δ18O record (Stuiver and Grootes, 2000; Fig. 5H). Although H1 is dated between ca. 16.5 and ca. 16 cal ka BP (Bond et al., 1993), several authors imply that this setback may still be related to H1 (e.g. Svensson et al., 2008; Fleitmann et al., 2009).

Following this interpretation, the H1 in the Aegean region can be characterised as a 2.4 ka long interval (ca. 17.4 to ca.
15 cal ka BP) that comprises a particularly dry and cold phase at ca. 16.5 cal ka and a milder phase between ca. 15.7 and ca. 15.1 cal ka BP. A comparison with terrestrial H1 signals in the borderlands of the western Mediterranean Sea and in Italy, where the H1 is recorded in strong increases of SEP (e.g., an Artemisia pollen percentage increase of >20%; Brauer et al., 2007; Fletcher and Sánchez Goñi, 2008; Combrouie-Nebout et al., 2009) and an MT$_{year}$ decline of >5°C (with temperature of the coldest month decreasing by ~3°C; Kageyama et al., 2005), shows that the impact of the H1 was less pronounced in the Aegean region compared to preceding climate conditions. In the central Mediterranean region, the impact of the H1 on vegetation dynamics was probably stronger than in the Aegean region, but weaker than in the borderlands of the western Mediterranean Sea (Combrouie-Nebout et al., 1998). This W–E gradient during H1 can be ascribed to the generally dryer and colder conditions in the eastern Mediterranean region prior to H1 as compared to the milder conditions in the western Mediterranean region (e.g. Fletcher and Sánchez Goñi, 2008; Combrouie-Nebout et al., 2009; see also below).

Bolling–Allerød interstadial (ca. 14.7 to ca. 12.6 cal ka BP)

Our pollen-based vegetation data and quantitative climate reconstructions for the terrestrial realm as derived from core SL152 suggest relatively mild conditions during Bolling and Allerød in the northern Aegean borderlands, with MT$_{year}$ even reaching Holocene values. However, a pronounced climate setback at ca. 13.8 ka, which – depending on terminology – reflecting the rapid transition to the YD (Fig. 3), while particularly MT$_{year}$ started declining slightly earlier (~12.9 cal ka BP), and more gradually; lowest MT$_{year}$ were only reached at 12.5 cal ka BP (Fig. 5F and G). Two particularly dry phases of the YD are indicated by especially high SEP percentages and low MP$_{year}$ values at ca. 12.6 and ca. 11.8 cal ka BP.

Our results support and complement the findings of Rossignol-Strick (1995), Kuhnt et al. (2007), Kotthoff et al. (2008a) and Dormoy et al. (2009) that the YD is very strongly reflected in the Aegean region, and its impact on both the marine and the terrestrial realm was abrupt, with a decline of annual temperature by 6°C and an annual precipitation decrease of 300 mm (50%), the latter occurring abruptly within ca. 150 a. This is different from findings from more westerly settings of the Mediterranean region: in the Adriatic Sea, the YD is reflected in a less pronounced, shorter increase in N. labyrinthus percentages (Combrouie-Nebout et al., 1998; Sangiorgi et al., 2002) as compared to the northern Aegean Sea. Similarly, a milder YD in terrestrial environments of the central Mediterranean region is indicated by pollen records from Italy (e.g. Magny et al., 2006; Brauer et al., 2007) and western Greece (e.g. Lawson et al., 2004, 2005). We ascribe this discrepancy to the generally milder temperatures during the YD in that region in comparison to the Aegean region. In terrestrial settings of the western Mediterranean region, the YD is expressed by the spreading of steppe elements, but temperature declines were also weaker than in the Aegean region (Fletcher and Sánchez Goñi, 2008; Combrouie-Nebout et al., 2009; Dormoy et al., 2009).

It cannot be excluded, however, that the abruptness and intensity of the terrestrial, pollen-based YD signal in the northern Aegean region are partly caused by changes in wind direction and intensity (Kotthoff et al., 2008a); such a scenario has been reported from other regions in Europe (e.g. Brauer et al., 2008) and is also suggested for the northern Aegean region (Ehrmann et al., 2007). Increased storminess during the spring months could have been caused by abrupt changes in intensity and/or direction of the westerlies (Brauer et al., 2008) and/or by a strengthening of the Siberian High (e.g. Rohling et al., 2002; see also above).

Early Holocene (ca. 11.7 to ca. 9.6 cal ka BP)

Subsequent to the YD, the abundances of tropic–subtropic and transitional planktic foraminifers increase until ca. 10 cal ka BP, indicating a rise in SSTs (Fig. 5B). The planktic δ18O records of the cores SL152 and SL148 (Fig. 5C; Kuhnt et al., 2007) reflect the transition from glacial to interglacial conditions at ca. 11 cal ka BP, exemplified by a shift of ~2‰ towards lighter values.

For the terrestrial realm, the pollen-based quantitative climate data indicate a return to higher MT$_{year}$ (>13°C) after the YD within ~150 a, while the MP$_{year}$ appears to have increased more gradually. Both climate parameters underwent several oscillations, the strongest of which is registered at ca. 11 cal ka BP (Fig. 5). This setback is probably related to the ‘11.2 cal ka event’ described from central Europe and the Mediterranean area (Hoek and Bos, 2007; Magny et al., 2007; Dormoy et al., 2009). Subsequently, at ca. 10.5 cal ka BP, L. machaerophorum became the most frequent dinocyst taxon (Fig. 3). Its abundance increase points either to decreasing salinity or enhanced
nutrient input (e.g. Aksu et al., 1995) and can probably be ascribed to increased meltwater input into the Aegean Sea due to the melting of glaciers in the Rhodope mountains, which resulted from the general temperature increase after the YD (Ehrmann et al., 2007).

The following spreading of Operculodinium species between ca. 10.5 ka and 9.6 cal ka BP and the almost coeval increase of benthic foraminiferal high-food/low-O₂ indicators (Fig. 4; Kuhn et al., 2007) were probably caused by the onset of water column stratification due to increased precipitation. Such a precipitation increase is reflected by a rise in NSAP and the water column stratification due to increased precipitation. Such increased freshwater input rather than declining temperatures.

YD, and MP year dropped by almost 50% within 150 mm.

Kotthoff between ca. 10 and ca. 9.5 cal ka BP was probably not caused by decreasing temperature (Ortiz et al., 1995), given that coeval increases in the percentages of dinocyst cold indicators are not observed (Fig. 3), and quantitative MT year reconstructions for the terrestrial realm (Fig. 5f) suggest rather stable conditions. The onset of the T. quinqueloba increase, a taxon considered to be fairly tolerant towards lower salinities (Rohlting et al., 1993, 1997), is, however, coeval with very high MP year in the borderlands of the Aegean Sea (Fig. 5B and G). This observation implies that the T. quinqueloba increase was caused by increased freshwater input rather than declining temperatures.

Conclusions

To elucidate the response of terrestrial and marine ecosystems in the Aegean region to late Pleniglacial and Lateglacial climate perturbations, and to compare the impact of the H1 event with that of the YD, we have analysed and integrated marine and continental proxy data from two northern Aegean sediment cores in centennial-scale (125–400 a) resolution.

Our results allow clear identification of the impact of the H1 event on surface-water conditions and terrestrial ecosystems. Enhancing the already dry and cold conditions of the regional climate during the late Pleniglacial, the H1 event led to an additional decline in SST in the northern Aegean Sea and an MP year, and MT year decrease in the borderlands of the Aegean Sea.

The Bolling and the Allerød were intervals of generally warmer and more humid climate in the northern Aegean region. The humid conditions led to increased runoff and nutrient input into the Aegean Sea. MT year reached almost Holocene levels during both interstadials. However, several short-term climate setbacks (particularly the Older Dryas; ca. 13.8 cal ka BP) led to transient temperature decreases in the Aegean Sea and its borderlands; the borderlands further witnessed a decline in MP year.

Climate conditions during the H1 and the YD were almost identical, with only slightly lower temperatures during the YD observed in the terrestrial realm. Similar dinocyst assemblages indicate comparable surface-water conditions in the northern Aegean Sea during both intervals. The YD, however, interrupted a transition to warmer and more humid conditions initiated during the Bolling/Allerød. The MT year in the borderlands of the Aegean Sea declined by >6°C with the onset of the YD, and MP year dropped by almost 50% within 150 mm. Therefore the YD witnessed strong changes in both marine and terrestrial ecosystems, while MP year in the borderlands gradually increased until the deposition of sapropel S1. A major climate setback at ca. 11 cal ka BP, probably correlated to a cold event at ca. 11.2 cal ka BP known from various European climate archives, strongly affected the terrestrial ecosystems. For this time interval from ca. 11.6 to ca. 9.6 cal ka BP, dinocyst assemblages reflect a transition to a stratified water column, increased nutrient input and higher SSTs in the marine realm of the Aegean region.

Acknowledgements. Discussions with K.-C. Emeis, W. Ehrmann, U. C. Müller, J. Fiebig and B. van de Schouwen are gratefully acknowledged, as are helpful comments and suggestions by two anonymous reviewers. We thank the crew, the scientific party and chief scientist C. Hemleben of RV Meteor cruise MS1/3. The Greek authorities are thanked for allowing research to be carried out in their territorial waters. This study was supported by the German Research Foundation (grant PR 651/6-1) and the BIK-FA/ÖWE research funding program of the State of Hesse, and furthermore by the French CNRS through the LAMA ANR research project.

Abbreviations. Corg organic carbon; H1, Heinrich I (event); MAT, modern analogue technique; MP year, mean annual precipitation; MT year, mean annual temperature; SST, sea surface temperature; YD, Younger Dryas.

References

Dartmouth University Libraries

