2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009

17 December 2014

Deforestation threatens species richness in streams ...

05 December 2014

Unsichtbare Arten - Bedrohte Arten sind in Verbreitungsmodellen unterrepräsentiert...

02 December 2014

Von der Forschung in die Praxis: „Algenmelder“ für Gewässer...

12 November 2014

On a safari through the genome – genes offer new insights into the distribution of giraffes...

31 October 2014

Frankfurter Biodiversität und Klima Forschungszentrum (BiK-F) erhält Spitzenbewertung vom Wissenschaftsrat ...

23 October 2014

Vortrag „Long term dynamics in the Serengeti Ecosystem: Lessons for Conservation and Society “ ...

25 September 2014

Dengue fever and malaria in the Himalayas...

18 September 2014

Vorratshaltung beim Tannenhäher: Samenverstecke nutzen dem "gefiederten Förster" mehr als den Bäumen...

15 September 2014

The Biodiversity and Climate Research Centre opens its doors to the public...

11 September 2014

Pesticides are more toxic for soil organisms in dry soil and at enhanced temperatures ...

01 September 2014

Vortrag 4. September „The Climate Change Challenge and Opportunities“ ...

01 August 2014

More People Means More Plant Growth, NASA Data Show ...

25 July 2014

Erstmals Sandmücke in Hessen entdeckt...

09 July 2014

Climate change: Tropical species are most vulnerable to rising temperatures...

25 June 2014

Vogelschutz lohnt sich! – Vogelbestände in Osteuropa profitieren von neuer Gesetzgebung...

18 June 2014

Spanish slug – busting an invasion myth...

17 June 2014

The hidden history of rain: plant waxes reveal rainfall changes during the last 24,000 years...

11 June 2014

It’s complicated - new insights into the evolutionary history of bears ...

12 May 2014

A tale of survival – scientists reveals how fish were able to colonise poisonous springs...

08 May 2014

New ways for understanding the link between the uplift of the Tibetan Plateau and species diversity...

29 April 2014

Gehen oder bleiben? – Neue Emmy Noether-Gruppe erforscht die Klima-Anpassung von Vögeln ...

08 April 2014

Mapping ecosystem services: New method shows seed dispersal pathways of hornbills...

26 March 2014

Study yields 'Genghis Khan' of brown bears, and brown and polar bear evolution...

18 March 2014

Ants plant tomorrow's rainforest...

04 March 2014

Allergikern blüht etwas: Erhöhte Fitness der Beifußambrosie in Europa nachgewiesen ...

12 February 2014

Zukunftsthema Infektionskrankheiten – zwei neue Forschungsprojekte im Bereich Medizinische Biodiversität und Parasitologie...

05 February 2014

Aquatic Insects – a tremendous potential for research on diversification...

05 February 2014

Coffee: More biodiversity, better harvest ...

20 January 2014

Erfolgreiche Renaturierung von Gewässern: Das biologische Umfeld ist entscheidend...

Press Releases

Climate change: Tropical species are most vulnerable to rising temperatures

Frankfurt am Main, Germany, July 9, 2014. A new study by researchers of the LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University shows that tropical species will be most at risk from rising temperatures as the discrepancy between physiological thermal limits and projected temperatures is highest in tropical regions. In contrast, a large part of mammal and bird species in temperate zones will find ambient temperatures in 2080 within their tolerance ranges. However, indirect effects of rising temperatures may counteract opportunities given by species’ physiological tolerances in temperate zones. The paper was published today in “Proceedings of the Royal Society B: Biological Sciences.”

In responding to changing ambient conditions, species become extinct, adapt or move to a different, more suitable habitat. One of the largest studies of this kind was carried out by researchers from the German LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University. The study highlights the  alternative idea that the species may also just be able to tolerate the ongoing changes. The researchers selected nearly 460 mammal and bird species and analyzed their tolerated temperature ranges. These estimations were subsequently matched with data from geographical distributions and temperatures in these habitats currently and under projected climatic conditions in 2080. The analyzed species are a representative selection of physiological diversity within the global bird and mammal species.

Are species in temperate zones unmoved by climate change?
From a global perspective, 54% of the bird and 62% of the analyzed mammal species will experience temperatures above their tolerated threshold across 50% of their current distribution for a certain period of time. “However, we found significant regional differences. In 2080 the majority of the analyzed mammal and bird species living in the temperate zones will likely find suitable temperature conditions in a large part of their habitat. But they are not off the hook, because rising temperatures might have indirect effects. For instance, higher temperatures may improve conditions for pathogens or competing species and have negative impacts on the occurrence of food resources,” says Dr. Christian Hof, Biodiversity and Climate Research Centre (BiK-F).

Species-rich tropical regions are most vulnerable to rising temperatures
The share of species which will experience temperatures above their tolerated threshold increases from polar and temperate regions towards tropical regions, even though increases of temperature projected for temperate and polar regions exceed those in the tropics. “Bird and mammal species living in tropical regions tend to live closer to their upper temperature limits. Even small increases in ambient temperatures may therefore challenge their long-term survival,“ explains the lead author of the study, Imran Khaliq, a current PhD student at BiK-F. In addition, projections show decreasing precipitation in tropical regions. This worsens the perspective for tropical species as water availability is crucial for endotherm species (such as mammals and birds) to compensate thermal stress.

Birds adapt physiologically to ambient climate, mammals adapt by behavior
Projections of mammal responses to climate change may contain a substantial component of uncertainty as the data show a higher independence of physiologically-tolerated temperatures and climatic conditions in their habitats when compared to birds. This may be due to differing strategies in coping with extreme temperatures. While in birds, physiological adaptations appear to dominate their strategies to cope with extreme temperatures, mammals have developed behavioral strategies to cope with climatic extremes, e.g. creating preferred microclimates in burrows and dens.´

Paper:
Khaliq, I., Hof, Ch. et al.  Global variation in thermal tolerances and vulnerability of endotherms to climate change  – Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2014.1097

For more information please contact:
Dr. Christian Hof
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. + 49 (0)69 7542 1804
christian.hof@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
sabine.wendler@senckenberg.de

download PDF, 167 KB