Project groups


During the Cenozoic (last 65 Myrs) the climate became successively cooler.
This long-term cooling, so far, has been attributed to a decreasing concentration of atmospheric CO2 and continental shifts associated with mountain uplift, e.g. of the Tibetan Plateau. However, the reasons behind the more rapid climatic events of the Cenozoic (e.g. the onset of the Antarctic ice sheet, and the Eocene climate optimum), as well as the relative importance of various feedbacks, are still widely discussed.

A common denominator of the research activities in project E1.10 is the use of global numerical climate system models of various complexity to examine different aspects of the Cenozoic climate. These models are essentially used for two purposes:

First, simulations with climate system models are able to generate global fields of climate variables, such as temperature and precipitation, for a certain time-slice of the Earth's past. These variables are then validated against existing proxy records of past climate, e.g. from palaeobotanical records like in project E1.11.
If the model and proxy data are in good agreement, the model output could be used as forcing to subsystem models, such as Dynamic Global Vegetation Models (DGVM, see E2).

Second, we want  to isolate the impact of a certain feedback or a specific system component on the climate.
In such experiments, we are more interested in the relative changes of the climate variables rather than the absolute values.
For example, a special focus is devoted to investigate the influence of the terrestrial
biosphere on both long-term and rapid changes of the Cenozoic climate, because vegetation has significantly changed (Fig. 1).

fig. 1

Fig. 1: The Tortonian (top) and modern (bottom) vegetation (Micheels et al., 2007).

The project E1.10 was part of the Research Unit "UCCC - Understanding Cenozoic Climate Cooling", which ended in 2011 and was  funded by the German Research Foundation.


Barnosky, A.D., Hadly, E.A., Gonzalez, P., Head, J., Polly, P.D., Lawing, A.M., Eronen, J.T., Ackerly, D.D., Alex, K., Biber, E. Blois, J., Brashares, J., Ceballos, G., Davis, E., Dietl, G.P., Dirzo, R., Doremus, H., Fortelius, M., Greene, H.W., Hellmann, J., Hickler, T., Jackson, S.T., Kemp, M., Koch, P.L., Kremen, C., Lindsey, E.L., Looy, C., Marshall, C.R., Mendenhall, C., Mulch, A., Mychajliw, A.M., Nowak, C., Ramakrishnan, U., Schnitzler, J., Das Shrestha, K., Solari, K., Stegner, L., Stegner, M.A., Stenseth, N.C., Wake, M.H. & Z. Zhang (2017) : Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. - Science 355 (6325).

Colleoni, F., Kirchner, N., Niessen, F., Quiquet, A. & J. Liakka (2016) : An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions. - Quarternary Science Reviews, doi:10.1016/j.quascirev.2015.12.023.

Eronen, J.T., Mirzaie, M., Karme, A., Micheels, A., Bernor, R.L. & M. Fortelius (2009) : Distribution history and climatic controls of the Late Miocene Pikermian chronofauna - Proceedings of the National Academy of Sciences, 106(29), 11867-11871.

Francois, L., Utescher, T., Favre, E., Henrot, A., Warnant, P., Micheels, A., Erdei, B., Laurent, J.-M., Fauquette, S., Suc, J.-P., Cheddadi, R. & V. Mosbrugger (2011) : Modelling Late Miocene vegetation in Europe: results of the CARAIB model and comparison with palaeovegetation data. - Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 359-378.

Harzhauser, M., Piller, W.E., Müllegger, S., Grunert, P., Micheels, A. (2011) : Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. - Global and Planetary Change 76(1-2), 77-84.
Link to Publication

Liu, L., Puolamäki, K., Eronen, J.T., Ataabadi, M.M., Hernesniemi, E. & M. Fortelius (2012) : Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. - Proceedings of the Royal Society B - Biological Sciences 279: 2793-2799.

Micheels, A., Bruch, A. & V. Mosbrugger (2009) : Miocene climate modelling sensitivity experiments for different CO2 concentrations. - Palaeontologia Electronica, 12(2), 6A, 20 p.

Micheels, A., Bruch, A.A., Eronen, J., Fortelius, M., Harzhauser, M., Utescher, T. & V. Mosbrugger (2011) : Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model. - Palaeogeography, Palaeoclimatology, Palaeoecology 304(3-4), 337-350.

Micheels, A., Eronen, J. & V. Mosbrugger (2009) : The Late Miocene climate response to a modern Sahara desert. - Global and Planetary Change 67: 193-204.

Mosbrugger, V. & A. Micheels : Natürlicher und anthropogener Klimawandel - Wie katastrophal ist der Mensch? In: Wolf, P., Herdt, D. (eds.). Global Warming. Ethische und technologische Perspektiven des Klimawandels. Nell-Breuning Symposium. Leipziger Universitätsverlag, 17-28.

Schneck, R., Micheels, A. & V. Mosbrugger (2012) : Climate impact of the high northern vegetation - Late Miocene and present. - International Journal of Earth Sciences 101(1): 323-338.

Schneck, R., Micheels, A. & V. Mosbrugger (2010) : Climate modelling sensitivity experiments for the Messinian Salinity Crisis. - Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3-4), 149-163.

Stärz, M., Lohmann, G. & G. Knorr (2016) : The effect of a dynamic soil scheme on the climate of the mid-Holocene and the Last Glacial Maximum. -  Climate of the Past 12: 151-170.

Tang, H., Micheels, A., Eronen, J. & M. Fortelius (2011) : Regional climate model experiments to investigate the Asian monsoon in the Late Miocene. - Climate of the Past 7, 847-868.
Link to Publication

Utescher, U., Bruch, A.A., Micheels, A., Mosbrugger, V., & S. Popova (2011) : Cenozoic climate gradients in Eurasia – a palaeo-perspective on future climate change? - Palaeogeography, Palaeoclimatology, Palaeoecology 304(3-4), 351-358.